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TURBULENT CONJUGATE HEAT- AND MASS TRANSFER
IN CHEMICAL CONVERSIONS IN A TUBULAR REACTOR
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A model of turbulent heat- and mass transfer with nonlinear sources (sinks) that appear as a result of chemi-
cal reactions of the first and second orders has been developed. The conjugation condition (equality of tem-
peratures and local fluxes) at the reactor — coolant interface was used for this purpose. A finite-difference
numerical solution by the alternating direction method is obtained. The influence of the coefficients of turbu-
lent viscosity on heat- and mass transfer is investigated. The model has been tested on the example of mod-
eling fast polymerization processes. It has been established in practical calculations of the processes of fast
polymerization that instead of the model with variable coefficients of transfer and velocities of liquid motion
one can use its approximation with constant coefficients of transfer and velocities of liquid motion.

Introduction. The processes of turbulent heat- and mass transfer in chemical transformations accompanied by
the removal and absorption of heat have found widespread use in thermophysics, chemical technology, and chemical
physics [1–4]. The most well-known examples are the processes of combustion and fast polymerization reactions [5, 6].

It appears necessary to allow for heat- and mass transfer in chemical transformations when the characteristic
time of a chemical reaction becomes close in value to the characteristic time of heat or substance transfer. The physi-
cal processes of substance and heat transfer (diffusion, heat conduction, convection, turbulence, etc., complicated by
chemical transformations, especially under the conditions of their turbulent interaction) begin then to exert an apprecia-
ble effect on final results, which in the process of solution leads to complex nonlinear mathematical models.

The solutions of these problems are based on the moment of momentum, substance, and energy conservation
equations. The solutions themselves are complicated by the presence of small parameters at higher space derivatives
and nonlinear sources (sinks). The small parameters at higher derivatives and the great values of sources (sinks) be-
have differently over different time intervals [1]. All this requires the development of special approaches and methods
of solution of heat- and mass transfer problems in chemical transformations.

Of particular interest is modeling of the processes in two-phase flows [7]. It is difficult to adequately describe
these processes because one has not only to take into account the equations in the volume of the two-phase space but
also to represent correctly the boundary conditions at the phase interface (the surface of phase discontinuity).

In the majority of works, for the description of conjugation at the interface of two phases the well-known
Newton law (the boundary condition of the third kind) is used as the boundary condition of the second phase (apart
from the equality of substances), whereas the gradient of the substance itself is used for the first phase [5, 8]. A situ-
ation arises where the gradient of the substance which characterizes the first phase at the point is equated to the average
value of the second phase, which is mathematically incorrect and inadequately represents the physics of the process.

In the present work, as a boundary condition we use the condition of conjugation at the phase interface, viz.,
the equality of temperatures and of local fluxes. On the one hand, such a statement of the problem complicates the
very solution of the problem because of the addition of one other equation of transfer, but, on the other hand, it al-
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lows one to adequately describe two-phase transfer under the conditions of conjugation at the phase interface. Such a
statement of the problem makes it possible to adequately describe the process investigated without resorting to addi-
tional experimental data.

Mathematical Model. As an object of investigation we consider turbulent convective heat- and mass transfer
in an inner tube (reactor) in which a chemical reaction with liberation (absorption) of heat proceeds (Fig. 1). On the
outside the reactor is coaxially cooled (heated) by a turbulent heat carrier flow. At the "reactor–cooling (heating) liquid"
phase interface the conjugation conditions — the equality of temperatures and of local heat fluxes — are employed.

Let zone I be composed of the reactor zone and of the coolant (heater) zone; it consists of two concentric
tubes (the common zone is not shown in Fig. 1); zone II is the reactor zone, and zone III is the coolant (heater) zone.

A classical example of such a configuration is the process of fast polymerization in a tubular reactor with
heat removal through the outer wall [5, 9–12]. It was described with the aid of a nonstationary two-dimensional
macrokinetic model that includes the mass conservation laws for the monomer and catalyst and the energy conserva-
tion law in the zone of reaction [9]. This problem has been solved numerically for a stationary case at constant (inde-
pendent of temperature) reaction rates (which corresponds to the occurrence of independent mass- and energy transfer
processes), without account for the influence of the cooling liquid temperature distribution on the process of polymeri-
zation, and at constant coefficients of turbulent transfer [5].

Below, we mathematically model nonstationary conjugate heat- and mass transfer with allowance for changes
in the reaction rates, according to the Arrhenius equation, under the conditions of conjugate statement of the problem,
at variable velocity profiles in the reactor and coolant, and with allowance for the distribution of the turbulent transfer
coefficients in the reactor. As an example, the proposed model is used to calculate the process of fast polymerization.
Despite the fact that the main physicochemical and kinetic data used in our calculations correspond to the processes of
fast polymerization, the general model developed by us can be applied to a wide class of problems where there is con-
jugate turbulent heat- and mass transfer complicated by chemical transformations.

We will consider the case where zone II contains a mixture of two components: a (monomer) and b (catalyst
— an active center), with an exothermal chemical reaction of 2nd order proceeding between them according to the ki-
netic model of [5]. In this zone, the temperature distribution obeys the laws of convective turbulent heat transfer.

One of the techniques of improving the characteristics of polymers is the removal of heat from reaction zone
II, which is accomplished in the zone of the coolant through a thin barrier made from a material of infinite thermal
conductivity so that its resistance can be neglected. For this purpose, a cooling liquid is supplied into zone III.

For zone II (the reactor zone), the mathematical model includes the momentum, substance, and energy conser-
vation equations for averaged values of velocity, temperature, and substance:

∂u2

∂τ
 + (u2⋅∇) u2 = 

1

ρ2
 ∇⋅P2 + F2 , (1)

∇⋅u2 = 0 , (2)

Fig. 1. Schematic of a tubular reactor with cooling from the side of outer wall.

1141



∂ca

∂τ
 + f1 

∂2
ca

∂τ2  + (u2⋅∇) ca = ∇⋅(D~2⋅∇ca) − kacacb exp 



− 

Ea

RT2




 , (3)

∂cb

∂τ
 + f2 

∂2
cb

∂τ2
 + (u2⋅∇) cb = ∇⋅(D~2⋅∇cb) − kbcb exp 




− 

Eb

RT2




 , (4)

ρ2cp2 







∂T2

∂τ
 + f3 

∂2
T2

∂τ2
 + (u2⋅∇) T2







 = ∇⋅(λλ

~
2⋅∇T2) + Qakacacb exp 




− 

Ea

RT2





(5)

and the momentum and energy conservation equations for zone III (the zone of cooling):

∂u3

∂τ
 + (u3⋅∇) u3 = 

1

ρ3
 ∇⋅P3 + F3 , (6)

∇⋅u3 = 0 , (7)

ρ3cp3 




∂T3

∂τ
 + (u3⋅∇) T3




 = ∇⋅(λλ

~
3⋅∇T3) . (8)

For the solution of the system of equations (1)–(8), we will write out the boundary and initial conditions. We
introduce the generalized function F = pca, cb, T2q. Then, according to the symmetry condition

∂F

∂r2
 = 0    at    r2 = 0 . (9)

The conditions of conjugation of zones II and III are written in the form

T2 = T3 ,   λ2 
∂T2

∂r2
 = λ3 

∂T3

∂r3
     at    r2 = r3 = R2 . (10)

The conjugation conditions (10) express the equality of temperatures and of local heat fluxes at the interface between
zones II and III [1]. Applying them, we can find the local distribution of temperatures in each zone. The conditions
of the absence of a flow through the impermeable wall are written in the form

∂ca

∂r2
 = 
∂cb

∂r2
 = 0    at    r2 = R2 . (11)

At the boundary of zone III we take the symmetry condition:

∂T3

∂r3
 = 0  at  r3 = R2 + R3 . (12)

This selection of the boundary condition is based on the assumption that the apparatus in which fast chemical reac-
tions proceed is constructed as a system of tubular elements located in parallel.

We use the condition of the first kind at the inlet to the reactor:
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ca = ca1 (r2) ,   cb = cb1 (r2) ,   T2 = T21 ,   T3 = T31      at    x = 0 . (13)

The condition at the exit is written in the form

∂F
∂x

 = 0   at   x = L ,   F = 



ca, cb, T2, T3




 . (14)

It should be kept in mind that L in Eq. (14) is the length of the reactor. Naturally, the process of heat- and
mass transfer can be completed earlier, viz., at a distance from the entrance smaller than the reactor length. In this
case, the effective length of heat- and mass transfer can be determined from the condition of attainment of constant
values for the concentrations of the monomer and active center (the condition of emergence into a stationary regime).
It can also characterize the magnitude of the active section of heat- and mass transfer, the multiplicity of which points
to the application of agitators in the case of a slip of the reaction mixture in the reactor.

We will use the initial conditions

ca = ca0 ,   cb = cb0 ,   T2 = T20 ,   T3 = T30 . (15)

Let us simplify the system of equations (1)–(8). We assume that the monomer and catalyst in zone II and the
liquid for cooling in zone III move with velocities u2 and u3 respectively equal to the distribution of turbulent veloci-
ties calculated by one of the models that characterize the law of turbulence attenuation on approach to the wall [13].
The effective coefficients of turbulent transfer can be represented as a sum of turbulent and molecular coefficients,
with their values being based on the physical statement of the models which are based on the concept of complete
attenuation of turbulent pulsations on the wall. To compare calculations, we also used averaged coefficients of turbu-
lent transfer far from the wall. However, near the wall, at a distance of 2–3 steps from it, it is assumed that these
coefficients change by the Landau–Levich law [14]. In both cases it is assumed that the main role near the wall is
played by molecular momentum-, substance-, and energy transfer, as is evident, e.g., from conjugation condition (10).
We also assume that the convective turbulent transfer depends only on the coordinate in the transverse direction. Since
investigations of relaxation and wave processes and of the Monge surface associated with phase transitions or chemical
transformations are of independent interest, the influence of these effects on transfer are not taken into account in this
work. With these approximations, the system of equations takes the form

equations for zone II

∂ca

∂τ
 + u2 

∂ca

∂x
 = 

∂
∂x

 Da 
∂ca

∂x
 + 

1

r2
 
∂
∂r2

 



Dar2 

∂ca

∂r2




 − ka

0
cacb exp 




− 

Ea

RT2




 , (16)

∂cb

∂τ
 + u2 

∂cb

∂x
 = 

∂
∂x

 Db 
∂cb

∂x
 + 

1

r2
 
∂
∂r2

 



Dbr2 

∂cb

∂r2




 − kb

0
cb exp 




− 

Eb
RT2




 , (17)

ρ2cp2 




∂T2

∂τ
 + u2 

∂T2

∂x




 = 

∂
∂x

 λ2 
∂T2

∂x
 + 

1

r2
 
∂
∂r2

 



λ2r2 

∂T2

∂r2




 + Qaka

0
cacb exp 




− 

Ea

RT2




 ; (18)

an equation for zone III

ρ3cp3 




∂T3

∂τ
 + u3 

∂T3

∂x




 = 

∂
∂x

 λ3 
∂T3

∂x
 + 

1

r3
 
∂
∂r3

 



λ3r3 

∂T3

∂r3




 . (19)

The boundary and initial conditions for the solution of the system of equations (16)–(19) are left unchanged.
Calculation of the Turbulent Transfer Coefficients. Since the coefficients of turbulent transfer of substance

and energy are related to the coefficient of turbulent viscosity, we must select a model of calculation of the latter.
There are different approaches to solving these problems. They are based on various assumptions about the laws of
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attenuation of turbulent viscosity with approach to the wall. Application of one or another assumptions simplifies the
solution of the problem. Otherwise the problem may appear to be within the framework of general statement problems,
where almost all of the factors are taken into account but it is difficult to obtain a solution.

In the present work the Boussinesq approximation is used with account for the fact that there is the following
relationship between the deviators of the tensors of Reynolds stresses and averaged deformation rates εij [13]:

τij = 2µχnS
nεij , (20)

where χn and n are dimensionless constants; εij is the deformation rate tensor which for an incompressible liquid co-
incides with its deviator. The quantity S represents a positive function of averaged characteristics of turbulent flow; in
going from dimensional velocities and coordinates to dimensionless ones it becomes proportional to the Reynolds num-
ber. In particular, as shown in [13], this requirement is satisfied by the relations

S1 = 
uy

ν
 ,   S2 = 

u
2

ν
 

1





∂u

∂y





 ,   S3 = 




u 
∂u

∂y





ν 




∂2
u

∂y
2





 ,   S4 = 
y

2

ν
 




∂u

∂y




 ,   S5 = 

1

ν
 





∂u

∂y





3





∂2
u

∂y
2





2 . (21)

Equations (20) and (21) allow one to determine the kinematic coefficient of turbulent viscosity. Indeed, from expres-
sion (20) it follows that

µt = µχnS
n
 = ρνt ,

(22)

whence

νt = νχnS
n
 . (23)

The parameter S entering into the equation for the kinematic coefficient of turbulent viscosity can be deter-
mined by one of the relations (21). As is seen from these relations, to find the value of S it is necessary to have the
given velocity profile. It can be determined, for example, from the previous layer being included into the general
scheme of the calculation algorithm or by the technique suggested in [13]. In the present work the value of S was de-
termined by the technique of [13], according to which the velocity profile is

u~ = 
u
u0

 = 
f (n, η)
f (n, 0)

(24)

with

f (n, η) = ∫ 
η

1 

1 − η

2n−1
2n 




2n ⁄ (1+n)

 dη ,
(25)

where n is the exponent of the quantity Sn in the expression for the kinematic coefficient of turbulent viscosity (23).
Calculations by the turbulence model of [13] were obtained at different values of n, i.e., n = 2 ⁄ 3, 3 ⁄ 4, and

9 ⁄ 10 in Eq. (23). This choice of the exponents in Eq. (23) is due to the fact that near the tube wall the velocity pro-
files corresponding to these values asymptotically approach the profiles of turbulence attenuation with approach to the
wall by the 1 ⁄ 5, 1 ⁄ 7, and 1 ⁄ 19 power laws. It should be noted that, as mentioned in [13], the variant of the turbu-
lence theory made it possible to adequately describe calculations of all 33 turbulent boundary layers acknowledged by
the Stanford conference in 1968 as standard ones.
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Using the technique of determining the velocity profile in a turbulent incompressible liquid in a reactor, in
particular, by relations (24) and (25), it is possible to reduce the velocity, e.g., at n = 3 ⁄ 4 in zone II, to the form

u
_

2 (η) = 1.225 1 − η1 ⁄ 3

1 ⁄ 7

 − 0.306 1 − η1 ⁄ 3

8 ⁄ 7

 + 0.081 1 − η1 ⁄ 3

15 ⁄ 7

 , (26)

where

u2 = u20u
_

2 (η) ;   η = r2
 ⁄ R2 . (27)

The coefficient of turbulent diffusion for the monomer is then calculated in terms of the number Sc2t = 
ν2t

Dat
 and the

value of the kinetic coefficient of turbulent viscosity is determined by Eq. (23) depending on the parameter Sn:

ν2t = 
1
2

 ν2mχnRe2mG1 (η) ,

where, e.g., for n = 3 ⁄ 4 the function G1(η) is approximated as

G1 (η) = − 0.25886η4
 − 0.59772η3

 − 0.84409η2
 + 0.50523η ,   ηmax ≤ η ≤ 1 ;

G1 (η) = − 0.25886ηmax
4

 − 0.59772ηmax
3

 − 0.84409ηmax
2

 + 0.50523ηmax ,   η < ηmax .
(28)

Here, ηmax corresponds to the maximum value of the function G1.
It should be noted that the function G1(η), which uses relations of the type of (21), attains a maximum and

tends to zero values on the wall and the axis. We assumed that the zero value of this function on the axis did not
correspond to the physical meaning of the change in the kinematic coefficients of turbulent viscosity. This problem
was also discussed in [15]; therefore in calculations this dependence was used up to ηmax. Above this value the kine-
matic coefficient of turbulent viscosity was taken equal to its maximum value. According to these remarks, the effec-
tive coefficient of turbulent diffusion, e.g., for the monomer, takes the form

Da = Dam 



1 + 

Dat
Dam




 = Dam 




1 + 

χnRe2mScam
2Sc2t

 G1 (η)



 . (29)

Other effective coefficients of turbulent exchange in zones II and III were determined similarly.
Nondimensionalization of the problem. We shall express the basic quantities in terms of dimensionless ones:

ca = ca0c
_

a ,   cb = cb0c
_

b ,   u2 = u20u
_

2 ,   τ = tt0 ,   x = x
_
x0 ,   r2 = r

_
2r20 . (30)

We introduce the "hot" temperature T∗:

T2 = T∗ + θ2RT∗
2 ⁄ Ea ;   θ2 = 

Ea

R (T∗)
2 (T2 − T∗) ,   β = RT∗

 ⁄ Ea .

Then the exponent in the Arrhenius equation can be represented as

exp 



− 

Ea

RT2




 = exp 




− 

Ea

RT∗ (1 + θ2RT∗
 ⁄ Ea)




 = exp 




− 

1

β (1 + θ2β)



 = exp 




− 

1

β
 + 

θ2

1 + θ2β



 .

The technique of nondimensionalization of the system of equations (16)–(19) can be illustrated using as an
example the energy conservation equation (18). We introduce the following characteristic time of reaction in a volume
element (sec⋅kg ⁄ m3): ηa = 1 ⁄ (ka

0 exp [−1 ⁄ β]). Then we may use the time scale in the form t0 = ηa
 ⁄ ca0.
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Using Eq. (18), we determine the scales of x0 and r20. Having introduced λ2
∗ = λ2

 ⁄ (ρ2cp2), qa = Qa
 ⁄ (ρ2cp2),

we obtain

∂T2

∂τ
 + u2 

∂T2

∂x
 = 

∂
∂x

 λ2
∗
 
∂T2

∂x
 + 

1
r2

 
∂
∂r2

 



λ2
∗
r2 
∂T2

∂r2




 + qaka

0
cacb exp 




− 

Ea

RT2




 . (31)

This equation yields the estimates of the transverse and longitudinal scales:

t0 = 
(x0)

2

λ2max
∗

 ,   t0 = 
(r20)

2

λ2max
∗  ,   x0 = √λ2max

∗
t0  ,   r20 = √λ2max

∗
t0  ,

where λ2max
∗  = max (λ2

∗).
We correct the scale of the longitudinal coordinate with the aid of the parameter m = x0

 ⁄ r20. This allows us
to investigate the relationships between the local scale and the scale of the entire reactor. We obtain

x0 = m √λ2max
∗

t0 ,   r20 = √λ2max
∗

t0  . (32)

Using these scales, we write the system of equations (16)–(19) and boundary conditions in a dimensionless form as

∂c
_

a

∂t
 + G11u

_
2 (R20r

_
2) 
∂c
_

a

∂x
_  = G12da (r

_
2) 
∂2

c
_

a

∂x
_ 2  + 

G13

r
_

2

 
∂

∂r
_

2

 



da (r

_
2) r
_

2 
∂c
_

a

∂r
_

2




 − G141c

_
ac
_

b exp 




θ2

1 + θ2β




 ,

(33)

∂c
_

b

∂t
 + G41u

_
2 (R20r

_
2) 
∂c
_

b

∂x
_  = G42db (r

_
2) 
∂2

cb

∂x
_ 2

 + 
G43

r
_

2

 
∂

∂r
_

2

 



db (r

_
2) r
_

2 
∂c
_

b

∂r
_

2




 − G441c

_
b exp 





GEθ2

1 + θ2β




 , (34)

∂θ2

∂t
 + G21u

_
2 (R20r

_
2) 
∂θ2

∂x
_  = G22Λ2 (r

_
2) 
∂2θ2

∂x
_ 2  + 

G23

r
_

2

 
∂

∂r
_

2

 



Λ2 (r

_
2) r
_

2 
∂θ2

∂r
_

2




 + G241c

_
ac
_

b exp 




θ2

1 + θ2β




 , (35)

∂θ3

∂t
 + G31u

_
3 [1 − r

_
3R20] 

∂θ3

∂x
 = G32Λ3 (r

_
3) 
∂2θ3

∂x
_ 2

 + 
G33

r
_

3 + Gr2

 
∂

∂r
_

3

 



Λ3 (r

_
3) (r

_
3Gr2) 

∂θ3

∂r
_

3




 , (36)

∂c
_

a

∂r
_

2
 = 0 ,   

∂c
_

b

∂r
_

2
 = 0 ,   

∂θ2

∂r
_

2
 = 0   for   r

_
2 = 0 , (37)

∂c
_

a

∂r
_

2
 = 0 ,   

∂c
_

b

∂r
_

2
 = 0 ,   θ2 = θ3 ,   G2 

∂θ2

∂r
_

2
 = 
∂θ3

∂r
_

3
   for   r

_
2 = 

R2

r20
 ,   r

_
3 = 0 , (38)

∂θ3

∂r
_

3
   for   r

_
3 = 

R3

r30
 , (39)

c
_

a = c
_

a1 ,   c
_

b = c
_

b1 ,   θ2 = θ21 ,   θ3 = θ31   for   x = 0 , (40)
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∂c
_

a

∂x
 = 0 ,   

∂c
_

b

∂x
 = 0 ,   

∂θ2

∂x
 = 0 ,   

∂θ3

∂x
 = 0   for   x

_
 = 

L

x0
 , (41)

c
_

a = c
_

b = 1 ,   θ2 = 0 ,   θ3 = θ30   for   t = 0 . (42)

Here,

R2 = r30Gr2 ,   R20 = 
r20

R2
 ,   θ3 = 

T3 − T∗
βT∗

 ,   θ30 = 
T30 − T∗
βT∗

 ,   θ21 = 
T21 − T∗
βT∗

 ,   θ31 = 
T21 − T∗
βT∗

 ,

r3 = r
_

3r30 + R2 ,

r30 = 
R3r20

R2
 ,   GE = Eb

 ⁄ Ea ,   G2 = 
λ2mR3

R2λ3m
 ,   G11 = G41 = G21 = 

u20 √ηa

m √λ2max
∗

ca0

 ,

G12 = 
Damax

m
2λ2max

∗
 ,   G42 = 

Dbmax

m
2λ2max

∗  ,   G13 = 
Damax

λ2max
∗

 ,   G43 = 
Dbmax

λ2max
∗

 ,   G141 = 
cb0

ca0

 ,

G441 = 
ηa

ηbca0

 ,   G22 = 
1

m
2 ,

G23 = 1 ,   G241 = 
qacb0

βT∗
 ,   G31 = 

u30 √ηa

m √λ2max
∗

ca0

 ,   G32 = 
λ3max
∗

m
2λ2max

∗
 ,   G33 = 

λ3max
∗

λ2max
∗

 




R2

R3





2

 ,

da (r
_

2) = 
Dam

Damax
 



1 + 

χnRe2mScam

2Sc2t
 G1 (R20r

_
2)



 ,   db (r

_
2) = 

Dbm

Dbmax
 



1 + 

χnRe2mScbm

2Sc2t
 G1 (R20r

_
2)



 ,

Λ2 (r
_

2) = 
λ2m

λ2max
 



1 + 

Pr2mχnRe2mG1 (R20r
_

2)
2Pr2t




 ,   Λ3 (r

_
3) = 

λ3m

λ3max
 



1 + 

Pr3mχnRe3mG1 [1 − r
_

3R20]

2Pr3t




 .

Numerical Solution. The system of equations (33)–(36) with boundary and initial conditions (37)–(42) has
been solved by the alternating direction method with finite-difference approximations of second order. We will con-
sider the construction of a difference grid on the example of Eq. (33). We omit the bar over the dimensionless coor-
dinates and denote the steps as follows: hτ − t, hi − x, hj − r2 or r3. The step in time hτ is taken constant and those in
hi and hj — variable, with ²i = (hi + hi+1) ⁄ 2.

We will approximate the differential terms by the control volume method [16]. The value of the nonlinear
term, owing its origin to the chemical reaction, will be taken from the previous step in time. Then for the step
n + 1 ⁄ 2 (in time)

2

hτ
 ca,i,j

n+1 ⁄ 2 − ca,i,j
n 

 + 
G11

2²i
 u2 (R20r2

 j) ca,i+1,j
n

 − ca,i−1,j
n 

 = G12da (R20r2
 j) 







ca,i+1,j
n

²ihi+1

 − 
2ca,i,j

n

hi+1hi

 + 
ca,i−1,j

n

²ihi







 +

+ 
G13

2r2
 j
²j

 






da 







r2
 j
 + r2

 j+1

2







 r2

 j
 + r2

 j+1
 

ca,i,j+1
n+1 ⁄ 2 − ca,i,j

n+1 ⁄ 2

hj+1

 − da 







r2
 j
 + r2

 j−1

2







 r2

 j
 + r2

 j−1
 

ca,i,j
n+1 ⁄ 2 − ca,i,j−1

n+1 ⁄ 2

hj







 −
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− G141ca,i,j
n

cb,i,j
n

 exp 







θ2,i,j
n

1 + θ2,i,j
n β







 ,

for the step n + 1

2

hτ
 ca,i,j

n+1
 − ca,i,j

n+1 ⁄ 2
 + 

G11

2²i

 u2 (R20r2
 j) ca,i+1,j

n+1
 − ca,i−1,j

n+1 
 = G12da (R20r2

 j) 







ca,i+1,j
n+1

²ihi+1

 − 
2ca,i,j

n+1

hi+1hi

 + 
ca,i−1,j

n+1

²ihi








+ 
G13

2r2
 j
²j

 






da 







r2
 j
 + r2

 j+1

2







 r2

 j
 + r2

 j+1
 

ca,i,j+1
n+1 ⁄ 2 − ca,i,j

n+1 ⁄ 2

hj+1

 − da 







r2
 j
 + r2

 j−1

2







 r2

 j
 + r2

 j−1
 

ca,i,j
n+1 ⁄ 2 − ca,i,j−1

n+1 ⁄ 2

hj








− G141ca,i,j
n

cb,i,j
n

 exp 







θ2,i,j
n

1 + θ2,i,j
n β







 .

We will note some specific features appearing in realization of the boundary conditions.
The symmetry condition on the reactor axis leads to the appearance of the indeterminacy of the form of

0 ⁄ 0 in Eqs. (33)–(35). We will resolve this indeterminacy on the example of Eq. (3) for ca. Indeed, if we represent
the second term on the right-hand side of Eq. (33) in the form

G13

r2

 
∂

∂r2

 






da (r2) r2 

∂ca

∂r2







 = G13 








d (da [r2] r2)

dr2

 
1

r2

 
∂ca

∂r2

 + da [r2] 
∂2

ca

∂r2
2







 ,

we obtain the indeterminacy of the form of 0 ⁄ 0 with ∂ca
 ⁄ ∂r2 → 0 and r2 →0. We resolve the indeterminacy with the

aid of the l’Hopital rule:

  lim
r→ 0

  
1

r2

 
∂ca

∂r2

 = 
∂2

ca

∂r2
2

 .

Then on the axis

d (da [r2] r2)

dr2

 
1

r2

 
∂ca

∂r2

 + da [r2] 
∂2

ca

∂r2
2  = 





d (da [r2] r2)

dr2

 + da [r2]



 
∂2

ca

∂r2
2  .

Substituting this expression into Eq. (33) on the axis r2 = 0, we obtain

∂ca

∂t
 + G11u2 (R20r2) 

∂ca

∂x
 = G12da [r2] 

∂2
ca

∂x
2

+ G13 




d (da [r2] r2)

dr2

  + da [r2]



 
∂2

ca

∂r2
2  − G141cacb exp 





θ2

1 + θ2β




 ,

where

∂2
ca

∂r2
2  C 

ca,i,−2
n

 − 2ca,i,1
n

 + ca,i,2
n

h1
2  = 2 

ca,i,2
n

 − ca,i,1
n

h1
2  .
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The solution of the joint system of discretized equations with account for the conjugation conditions on the
interface can be obtained in different ways [1]. In the algorithm developed we used a modified pivot method in which,
on the reactor axis, the first pivot coefficients are determined. They are "pursued" up to r3 = R2 + R3, where the values
of the sought-for function by which the entire temperature field is restored are already determined.

In discretization of derivatives in the remaining boundary conditions the Taylor difference approximations with
the second-order approximation were used.

Discussion of Results. The calculations were carried out for the process of isobutylene polymerization [5, 17,
18]. Based on the investigations carried out in [5], the following values of computational parameters were selected:
R2 = 0.05 m; R3 = 0.09 m; L = 1 m; m = 1; ρ2 = 635 kg ⁄ m3; cp2 = 2.17⋅103 J ⁄ (K⋅kg); Qa = 5.40⋅104 J ⁄ mole; ρ3
= 1000 kg ⁄ m3; cp3 = 4.18⋅103 J ⁄ (K⋅kg); ca0 = 103 mole ⁄ m3; cb0 = 2 mole ⁄ m3; T20 = T21 = T30 = T31 = T∗ = 293
K, u20 = 5 m ⁄ sec; u30 = 7.5 m ⁄ sec; Dam = Dbm = 10−9 m2 ⁄ sec; λ2m = λ3m = 0.6 W ⁄ (m⋅K); η2m = η3m =
0.5⋅10−6 Pa⋅sec; Sc2t = Pr2t = Pr3t = 1.

Since there is no reliable technique for estimating reaction rates and effective energies of activation [5, 17,
18], the reaction constants were determined, just as in [5], from the equation

Fig. 2. Dependences of the liquid motion velocity (a) and coefficient of turbu-
lent diffusion (b) on radial coordinate: 1) n = 2 ⁄ 3; 2) 3 ⁄ 4; 3) 9 ⁄ 10.

Fig. 3. Dependences of the concentration of the monomer (a), concentration of
the active center (b), temperature in the reactor zone (c), and temperature of
the cooling liquid (d) on the longitudinal and radial coordinates under station-
ary conditions for n = 9 ⁄ 10.
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ca

c0
 = exp 




− 

Kacb1
Kb

 



1 − exp 




− 

KbL

u2












 ,

which approximately describes the change in the monomer concentration in the absence of radial gradients and with a
negligible influence of diffusion in the longitudinal direction. With allowance for [5], the following values were ob-
tained and used in calculations: ka = 2.95⋅104 m3 ⁄ (mole⋅sec); Ea = 1.26⋅104 J ⁄ mole; kb = 3.37⋅104 sec−1, and Eb =
1.67⋅104 J ⁄ mole.

With the monomer and catalyst being supplied separately, the boundary conditions for concentrations at the
entrance were prescribed in the form

ca

c0
 = exp 




− 

Kacb1
Kb

 



1 − exp 




− 

KbL

u2












 ,

where U is the Heaviside function, k 2 (0, 1).
In the present work, the calculations were made at k = 0.7, which corresponds to the condition of the supply

of the catalyst into the "ring" from R2 to 0.7R2 (near the reactor wall) and of the monomer — into the central region
of the reactor limited by the radius 0.7R2.

The discretization steps h1 and hj were assumed constant.
The dependences of the velocity of liquid motion and of the diffusion coefficient on the radial coordinate for

three values of n are presented in Fig. 2. The higher n, the larger the section in which the velocity takes values close
to a maximum. Moreover, the diffusion coefficient attains the highest value at n = 9 ⁄ 10. Since this value, approxi-
mately equal to 1.5⋅10−3 m2 ⁄ sec, agrees well with the well-known experimental data for a turbulent tube flow [15],
the main body of calculations was made at n = 9 ⁄ 10.

The distributions of the concentration and temperature fields of the monomer and catalyst in the reactor (in
zone II) and of the cooling liquid temperature in zone III are presented in Fig. 3. As follows from Fig. 3a and b, a
sharp fall in the monomer and catalyst concentration is observed at the entrance of the reactor; its front is gradually
displaced to the side of the reactor symmetry axis. The rate of change in the concentrations of reagents and catalyst
decreases gradually from the side of the reactor wall, where the reaction products are cooled by the liquid of zone III.
Here, as is seen from Fig. 3c and d, the process of heat release in the volume of the reactor due to chemical reactions
and the subsequent cooling of the reaction product are presented in this figure as two competing processes. Moreover,
the dependence of temperature in the reaction zone (see Fig. 3c) attains a maximum. The situation is optimal when the
reaction heat is immediately removed by the cooling liquid. As the distance from the reactor entrance increases, the
steepness of the peak is gradually blurred, indicating the enhancement of the influence of diffusion processes.

Fig. 4. Dependences of the temperature in the zone of reactor on the longitu-
dinal and radial coordinates under stationary conditions for n = 2 ⁄ 3 (a) and n
= 3 ⁄ 4 (b).

1150



The temperature distributions in the reactor for n = 2 ⁄ 3 and 3 ⁄ 4 are presented in Fig. 4. It is seen that at n
= 2 ⁄ 3 the temperature peak is virtually localized, since the heat and substance transfer velocity takes minimum values
in this case. On the other hand, at n = 9 ⁄ 10 (Fig. 3c) the temperature profile at the exit from the reactor is virtually
uniform. The value n = 3 ⁄ 4 corresponds to an intermediate case. In actual fact, different values of n correspond to
different rates of mixing. The higher the rate, the closer the temperature profile to the uniform one.

The concentration and temperature fields were calculated also for the case where the coefficients of transfer
and liquid flow velocities were taken constant (Fig. 5). As the constant values of the transfer coefficients we used
maximum values of these coefficients, calculated by the model for n = 9 ⁄ 10. It is seen that the concentration and tem-
perature profiles in the reactor zone virtually coincide with the corresponding profiles in Fig. 3. Only the temperature
field in the zone of the cooling liquid differs strongly in the cases of constant and variable coefficients of transfer. The
same results were obtained for n = 2 ⁄ 3 and 3 ⁄ 4.

Conclusions. In practical calculations it is possible to use a model with constant coefficients of transfer and
liquid motion velocities. In particular, such a model can be used to determine the diffusion coefficients (rates of the
supply of reagents), which make it possible to attain the needed efficiency of the polymerization processes and other
processes of conjugate heat and mass transfer in chemical transformations.

NOTATION

c, concentration, mole ⁄ m3; cp, heat capacity, J ⁄ (K⋅kg); D
~

, diffusion tensor; Djt, Djm, j = a, b, coefficients of
turbulent and molecular diffusion, m2 ⁄ sec; d, dimensionless coefficient of turbulent diffusion; Ea, effective activation
energy of monomer reaction with an active center (of chain growth), J; Eb, effective activation energy of the reaction
of the breaking of circuit, J; F, vector of volumetric forces; f1, f2, f3, parameters of hyperbolic-type equation, sec;
G1, function of the dependence of the coefficient of turbulent viscosity on radial coordinate; hj, step of discretization
in the radial direction; hi, step of discretization in the longitudinal direction; hτ, step of discretization in time; Ka, spe-
cific rate of the reaction of the monomer with an active center (increase in circuit), m3 ⁄ (mole⋅sec); Kb, specific rate

Fig. 5. Dependences of the concentration of the monomer (a), concentration of
the active center (b), temperature in the zone of reactor (c), and of the tem-
perature of the cooling liquid (d) on the longitudinal and radial coordinates
under stationary conditions in the case of constant values of the coefficients of
transfer and liquid flow velocity.
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of reaction of circuit breaking, 1 ⁄ sec; k, parameter responsible for separate entry of the monomer and catalyst solu-
tions; ka, pre-exponential multiplier of the rate of monomer reaction with an active center (growth of the chain),
m3 ⁄ (mole⋅sec); kb, pre-exponential multiplier of the rate of reaction of chain breaking, 1 ⁄ sec; L, length of reactor, m;
Pr, Prandtl number; P, tensor of surface forces; Qa, heat of reactor of a monomer with an active center (growth of
chain), J ⁄ mole; Re = 2ui0Ri

 ⁄ νi, i = 2, 3, Reynolds number; R, universal gas constant, J ⁄ K; R2, radius of a tubular
reactor, m; R3, "radius" of the cooling zone, m; r2, radial coordinate in zone II, m; r3, radial coordinate in zone III,
m; r20, nondimensionalization scale for r2, m; r30, dimensionalization scale for r3, m; r

_
2, dimensionless radial coordi-

nate in zone II; r
_

3, dimensionless radial coordinate in zone III; Sc2t = ν2t
 ⁄ Dat, turbulent Sherwood number; Scam, mo-

lecular Sherwood number; S, "local Reynolds number" [13]; T, temperature, K; T∗, characteristic temperature in the
transformed Arrhenius equation, K; t, dimensionless time; u, velocity vector; u, averaged value of velocity, m ⁄ sec; x,
longitudinal coordinate, m; x

_
, dimensionless longitudinal coordinate; y, transverse coordinate, m; β = RT∗ ⁄ Ea, dimen-

sionless parameter; εij, deformation rate tensor, 1 ⁄ sec; η = r2
 ⁄ R2, dimensionless radial coordinate in Eq. (26); ηa,

characteristic time of reaction of monomer with active center, sec; ηb, characteristic time of reaction of chain breaking,
sec; θ, dimensionless temperature; Λ, dimensionless coefficient of turbulent thermal conductivity; λ

~
, thermal conductiv-

ity tensor; λ, coefficient of molecular thermal conductivity, J ⁄ (K⋅m⋅sec); λ∗, reduced coefficient of turbulent thermal
conductivity, m2 ⁄ sec; µ = νρ, dynamic coefficient of liquid viscosity, Pa⋅sec; νt and ν, kinematic coefficients of tur-
bulent and molecular viscosity; ρ, density, kg ⁄ m3; τ, time, sec; χ, constant. Subscripts and superscripts: 0, initial
value; 1, value at the reactor entrance; 2, zone II; 3, zone III; a, monomer; b, catalyst (active center); m, molecular;
max, maximum value of G1; t, turbulent.
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